

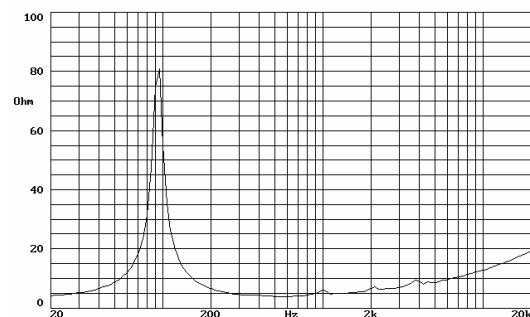
KEY FEATURES

- Good power handling (100 w RMS)
- Low armonic distortion
- Controlled dispersion up to 3 kHz
- Designed for high quality mid-frequency reproduction


TECHNICAL SPECIFICATIONS

Nominal diameter	200 mm. 8 in.
Rated impedance	4 ohms
Minimum impedance	3.7 ohms
Power capacity*	100 w RMS
Program power	200 w
Sensitivity	96 dB 1w @ 1m
Frequency range	150 - 7000 Hz
Recom. enclosure vol.	18 / 30 l 0.65 / 1.10 ft. ³
Voice coil diameter	38.5 mm. 1.5 in.
Magnetic assembly weight	2.8 kg. 6.17 lb.
BL factor	9 N/A
Moving mass	0.015 kg.
Voice coil length	7.5 mm
Air gap height	7 mm

THIELE-SMALL PARAMETERS**


Resonant frequency, fs	90 Hz
D.C. Voice coil resistance, Re	3.7 ohms
Mechanical Quality Factor, Qms	4.01
Electrical Quality Factor, Qes	0.39
Total Quality Factor, Qts	0.36
Equivalent Air Volume to Cms, Vas	13 l
Mechanical Compliance, Cms	209 $\mu\text{m} / \text{N}$
Mechanical Resistance, Rms	2.11 kg / s
Efficiency, η_0 (%)	2.38
Effective Surface Area, Sd (m²)	0.021 m ²
Maximum Displacement, Xmax***	1 mm
Displacement Volume, Vd	21 cm ³
Voice Coil Inductance, Le @ 1 kHz	0.3 mH

FREQUENCY RESPONSE AND DISTORTION

Note: on axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1w @ 1m.

FREE AIR IMPEDANCE CURVE

Notes:

*The power capacity is determined according to AES2-1984 (r2003) standard.
Program power is defined as the transducer's ability to handle normal music program material.

**T-S parameters are measured after an exercise period using a preconditioning power test.
The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

***The Xmax is calculated as $(\text{Lvc} - \text{Hag})/2 + \text{Hag}/3.5$, where Lvc is the voice coil length and Hag is the air gap height.